Neural computers a step closer

March 31, 2006

Brussels, 30 Mar 2006

The development of organic computers, which use mammalian neurons to process or store information or neurological prosthetics for overcoming disorders of the central nervous system, might sound like the background plot for Terminator 4. However, breakthroughs achieved within the NACHIP project, funded under the Sixth Framework Programme (FP6) and developed by researchers in Germany, Italy and Switzerland, could contribute to the development of precisely these kinds of technology.

The team, made up of Peter Fromherz from the Max-Planck-Institute for Biochemistry in Munich , Stefano Vassanelli from the Department of Membrane and Neurophysics at the University of Padua and Nikolaus Greeff from the University of Zurich's Institute of Physiology, is investigating ways for silicone chips to communicate with rat nerve cells. While organic computers may be decades away from being a reality, in the short term the technology could help in the development of screening methods for the pharmaceutical industry, especially relevant in the light of recent events during a drug trial in the UK.

'Pharmaceutical companies could use the chip to test the effect of drugs on neurons, to quickly discover promising avenues of research,' Professor Vassanelli told IST Results.

But in order to 'hear' what these neurons are 'saying', they must first be connected to microchips. The team had to find ways of attaching neurons to individual silicone chips, then develop an interface between the two. The team attacked the problem from both the biological and the semiconductor perspectives. German semiconductor company Infineon supplied advanced chips with thousands of transistors and hundreds of capacitors on a 1mm chip. The team then had to develop ways for nerve cells to make connections with it.

The team used special proteins found in the brain to glue the neurons to the chip. These proteins served a dual use: 'They also provided the link between ionic channels of the neurons and semiconductor material in a way that neural electrical signals could be passed to the silicon chip,' explained Professor Vassanelli.

Two-way communication was thus made possible. The chip's transistors recorded signals from the neuron, while the chip's capacitors send signals back to the neuron. 'Right now, we need to refine the way we stimulate the neurons, to avoid damaging them,' added the Professor.

The team envisage a genetic solution to the problem of communication between chip and neuron. 'Genes are where memory comes from, and without them you have no memory or computation. We want to explore a way to use genes to control the neuro-chip,' continued Professor Vassanelli. Assuming this can be done, and the researchers think it could be possible in a few decades, this could lead to interfaces between human nervous systems and computers. But for what purpose?

Devices controlled in this way would represent not simply prosthetics, but replacements. Prosthetic legs would be under direct control from the brain and be responsive. In theory, highly sophisticated prosthetics could enable a person to feel the road beneath the sole while walking. You could even stub your prosthetic toe and feel pain.

Organic computers could lead to an exponential growth in computational power. The most sophisticated supercomputers yet devised are still no match for the most primitive animal. If the human brain is compared to a computer, the number of computations per second required to simply interpret the world around us from sight alone is already enough to defeat any computer, never mind any interaction between the computer and outside world.

However, in the push to develop high speed and sophisticated organic computers, the EU starts with an advantage. 'Europe is very well placed in this field of research, because it is essentially a multidisciplinary field, and we have multidisciplinary teams working on it. [...] Europe should be very proud of these resources. It gives us access to equipment and expertise that would be very hard to replicate elsewhere.'

Further information

CORDIS RTD-NEWS/© European Communities, 2005
Item source

Already registered?

Sign in now if you are already registered or a current subscriber. Or subscribe for unrestricted access to our digital editions and iPad and iPhone app.

Have your say

Log in or register to post comments

Featured Jobs

Most Commented

Elderly woman looking up at sky

A recent paper claims that the quality of researchers declines with age. Five senior scientists consider the data and how they’ve contributed through the years

Woman tearing up I can't sign

Schools and universities are increasingly looking at how improving personalities can boost social mobility. But in doing so, they may be forced to choose between teaching what is helpful, and what is true, says David Matthews

Eleanor Shakespeare illustration 19 May 2016

Tim Blackman’s vision of higher education for the 21st century is one in which students of varying abilities learn successfully together

Otto illustration (5 May 2016)

Craig Brandist on the proletarianisation of a profession and how it leads to behaviours that could hobble higher education

Door peephole painted as bomb ready to explode

It’s time to use technology to detect potential threats and worry less about outdated ideas of privacy, says Ron Iphofen