UNIVERSITY OF SOUTHAMPTON

PhD Studentship, Synthesis of New Types of Nanoparticles and Their Antimicrobial Resistance

Location
Southampton, United Kingdom
Salary
£15,285 per annum
Posted
Friday, 9 April 2021
End of advertisement period
Saturday, 31 July 2021
Ref
1318820WF
Contract Type
Fixed Term
Hours
Full Time

Quantum, Light & Matter Group

Location:  Highfield Campus
Closing Date:  Saturday 31 July 2021
Reference:  1318820WF
Supervisory Team:    Prof. Antonios Kanaras (Physics), Professor Myron Christodoulides (Medicine)

Project description

Background: 

Antimicrobial Resistance (AMR) is one of the most serious threats globally with more than 25,000 patients dying in the EU/UK annually, and it is predicted that AMR bacteria will kill >10 million people by 2050. Economically, the loss to global GDP is predicted to be > £5 trillion over the next 40 years.

Recently, the use of nanoparticles has been suggested as an approach to fight pathogens. Nanoparticles possess several advantages: i) the choice of nanoparticle surface coating can be chemically altered to provide target specificity, drug delivery and higher reactivity with site-specificity; ii) nanoparticle properties can be enriched according to the chemical composition of the core (e.g. magnetic, optical and redox, etc.); iii) there is compelling evidence that some types of metal nanoparticles can kill bacteria by various mechanistic pathways such as the generation of free radicals  following an  external stimulus (e.g. light), by the release of metal ions, and through the highly reactive organic shell at the local microenvironment.

The main objective of this project will be to synthesize new types of nanoparticles which will target and kill pathogens that they are at the priority list of the World Health Organization. The Kanaras group (http://www.licn.phys.soton.ac.uk/) has an international reputation and expertise in nanoparticle functionalization and nanoparticle-cell interactions. Recently, the group has developed chemical protocols to synthesize and functionalize various types of nanoparticles with bioactive molecules such as peptides, proteins and DNA, which possess multi-tasking roles such as selective sensing and killing of cancer cells, inhibition of angiogenesis, and enhanced skin penetration. The Christodoulides group (http://www.southampton.ac.uk/medicine/about/staff/mc4.page) is recognized internationally for its contribution to understanding the pathogenesis of bacterial infections and devising strategies, including preventative vaccines, to combat Gram-negative AMR pathogens included in the WHO list.    

The successful applicant will gain multidisciplinary expertise across the areas of chemistry, physics and biology utilizing a broad range of characterization techniques

 If you wish to discuss any details of the project informally, please contact Prof. Antonios Kanaras, QLM Research Group, Email: a.kanaras@soton.ac.uk  Tel: +44 (0) 2380 59 2466.

Entry Requirements

A very good undergraduate degree (at least a UK 2:1 honours degree, or its international equivalent).

Closing date: applications should be received no later than 31 March 2021 for standard admissions, but later applications may be considered depending on the funds remaining in place.

 Funding: For UK students, Tuition Fees and a stipend of £15,285 tax-free per annum for up to 3.5 years. 

How To Apply

Applications should be made online. Select programme type (Research), 2021/22, Faculty of Physical Sciences and Engineering, next page select “PhD  Physics (Full time)”. In Section 2 of the application form you should insert the name of the supervisor Antonios Kanaras 

 Applications should include

Curriculum Vitae
Two reference letters
Degree Transcripts to date

Apply online: https://www.southampton.ac.uk/courses/how-to-apply/postgraduate-applications.page

 For further information please contact: feps-pgr-apply@soton.ac.uk

Similar jobs

Similar jobs