Locations

All three campuses are in the greater Tokyo area, with easy access to the world. They are in the perfect locations to experience Japanese culture.
For long-term international students

Academics Overview

Life Sciences

Colleage of Engineering
Mechanical Engineering
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Basic knowledge about manufacturing machinery
This field is the backbone of engineering. Study a variety of manufacturing devices, including automobiles, robots, energy devices, aerospace devices, and medical and welfare devices. Basic science will provide foundations, but our aim is to create a future with peripheral engineering to help harmonize with humans and society.

Colleage of Engineering
Engineering Science and Mechanics
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Functionality that moves society
Our aim is to offer education and research to help us imagine and realize harmony between humans and the environment, with a focus on mechatronics and mechanical sciences. Our field includes various engineering, scientific, and medical disciplines. Through our research over the following fields: biology, energy and the environment, material sciences, mechanical functionality and control, manufacturing and fabrication processes, and related applications for marine and aerospace technology.

Colleage of Systems Engineering and Science
Machinery and Control Systems
Year 1–4 at Omiya
Create the future, develop the personnel
Set our main focus on high-functionality robots, next-gen automobiles, and clean energy power sources that support our modern society. Analyze, develop, design, and make the machinery control systems essential for building our future. Learn the fundamentals and concepts to optimize these for humanity, environment, and society.

Colleage of Systems Engineering and Science
Bioscience and Engineering Biomedical Engineering Course
Year 1–4 at Omiya
Devices and systems that help people and aid recovery
Learn about mechatronics, which is a fusion of mechanical engineering and electrical and electronic engineering, where you can help develop medical welfare robots, rehabilitation devices, artificial organs, and other devices and support systems that help people live and recover functionality. Create the devices that assist the aged so they can continue to live healthy lives.

Colleage of Systems Engineering and Science
Bioscience and Engineering Bioscience Course
Year 1–4 at Omiya
Mysteries of life revealed through a better understanding of “Aging”
Learning to aid our understanding of the various problems you will face as a life scientist, such as aging and the effects of environmental contamination. Also learn the methodologies you can use to solve these issues. Research the causes of dementia and preventative measures. Develop ways to degrade environmental contaminants using microbes.

Colleage of Engineering
Materials Science and Engineering
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Basic materials that are used to create “things”
Handle metals, ceramics, organics, and composites. Offer a wide variety of research including high-functionality materials, environmental systems, physical properties of nano-materials, and the science of creating physical substances.

Colleage of Engineering
Applied Chemistry
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
New materials, medicine, food, environment, chemistry, and new applications
Strive to find new application of applied chemistry for electronic devices, medicines, foods, agricultural applications, environmental hygiene. Learn about inorganic chemistry, organic chemistry, physical-chemistry, chemical engineering, analytical chemistry, and biological chemistry through lectures and experiments.

Materials and Chemistry

Colleage of Engineering
Electrical Engineering
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Electrical technologies for use in high technology
Study a wide variety of fields related to electrical technologies. Gain skills to keep up with rapid development of high technology in industries.

Colleage of Engineering
Electronic Engineering
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Fundamental knowledge and creativity to work with electronics
Learn about the physical device field and the intelligent information circuitry field. This department follows the Japan Accreditation Board for Engineering Education educational program. Learn how to apply electronics that continue to develop to the changes in industry and society.

Colleage of Engineering
Communications Engineering
Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu
Information transmission using hardware and software
Learn about information network technology, electronics, mobile and wireless communications technology, photoreceptor, information processing technology (computer-related technologies), multimedia technology, and biological communication technology, all using to transmit information, with a good balance between hardware and software.
Academics Overview

Mathematical Sciences

College of Systems Engineering and Science

Mathematical Sciences

Year 1–4 at Omiya

Learn about a wide range of fields to become a 21st century technologist. First learn the basics of mathematics, then equip yourself with the applications available through simulation technology, and finally become the one who can work in a wide range of science and engineering fields.

College of Engineering

Information Science and Engineering

Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu

Learn the basics and applications of software technology, hardware technology, database and network technology, and human communication technology. Understand the underlying principles of each system, and develop the abilities to apply, display, and create each of them.

College of Systems Engineering and Science

Electronic Information Systems

Year 1–4 at Omiya

Information society using innovative and systematic approaches

Learn about planning, information, and the environment, getting experience in a variety of subjects to develop the ideas of disaster prevention and rebuilding plans for cities. Learn how to enhance earthquake resistance and tolerance systems of roads, railties to learn about mechatronics, motion control, and similar fields.

Technology to enrich lives and society

Learn mechanics, disaster prevention, information, environment and planning comprehensively develop the ideas of disaster prevention and rebuilding plans for cities. Learn how to enhance earthquake resistance and tolerance systems of roads, railties to learn about mechatronics, motion control, and similar fields.

Construction

College of Engineering

Civil Engineering Social Infrastructure Course

Year 1 and 2 at Omiya / Year 3 and 4 at Toyosu

Engineers with technological capabilities to provide for our citizens

Learn mechanics, disaster prevention, information, environment and planning comprehensively develop the ideas of disaster prevention and rebuilding plans for cities. Learn how to enhance earthquake resistance and tolerance systems of roads, railways, bridges, water and sewerage systems, houses, and ports.

Urban and Architectural Design Course

Year 1-4 at Toyosu

Learn how to become the one who can contribute to the society by solving the method of problems through architecture. Students have a chance to gain conceptual ideas by joining Project-Based Learning (PBL). Classes in our course are interactive so that student’s communication skills will be improved.

Design

College of Engineering and Design

Manufacturing Systems and Product Design Course

Year 1 and 2 at Omiya / Year 3 and 4 at Shibaura

Product design from the basics and through to advanced application

Learn how to become the one who can contribute to the society by solving the method of problems through architecture. Students have a chance to gain conceptual ideas by joining Project-Based Learning (PBL). Classes in our course are interactive so that student’s communication skills will be improved.

Robotics and Information Design Course

Year 1 and 2 at Omiya / Year 3 and 4 at Shibaura

Technicians to develop the products to aid society

Study an informational design, software design, and mechatronics design. Learn graphics, usability and other features of human-technology. Gain specialized knowledge and practical experience.

School of Architecture

Advanced Project Design Course

Year 1-4 at Toyosu

Learn a wide range of architectural subjects through lessons based in practice

Gain wide variety of knowledge in architecture such as interior decorating and urban development. Students apply the knowledge gained in lectures to exercises and deepen their understanding through designing and planning. Also, students visit construction sites to feel the real “space” and create construction materials.

Space and Architectural Design Course

Year 1-4 at Toyosu

Learn design that will improve quality of life

Students learn design for not only building but also urban space to increase the quality of residency. Skills to design buildings by considering design, history, technology, materials, environment and economy are gained through the course. Fieldwork in our course is opportunity to learn the latest technology and selecting buildings outside school is also designed for the course.

Urban and Architectural Design Course

Year 1-4 at Toyosu

Learn how to become the one who can contribute to the society by solving the method of problems through architecture. Students have a chance to gain conceptual ideas by joining Project-Based Learning (PBL). Classes in our course are interactive so that student’s communication skills will be improved.

Advanced Project Design Course

Year 1-4 at Toyosu

Learn a wide range of architectural subjects through lessons based in practice

Gain wide variety of knowledge in architecture such as interior decorating and urban development. Students apply the knowledge gained in lectures to exercises and deepen their understanding through designing and planning. Also, students visit construction sites to feel the real “space” and create construction materials.

Space and Architectural Design Course

Year 1-4 at Toyosu

Learn design that will improve quality of life

Students learn design for not only building but also urban space to increase the quality of residency. Skills to design buildings by considering design, history, technology, materials, environment and economy are gained through the course. Fieldwork in our course is opportunity to learn the latest technology and selecting buildings outside school is also designed for the course.

School of Architecture

Construction

College of Engineering and Design

Manufacturing Systems and Product Design Course

Year 1 and 2 at Omiya / Year 3 and 4 at Shibaura

Product design from the basics and through to advanced application

Learn how to become the one who can contribute to the society by solving the method of problems through architecture. Students have a chance to gain conceptual ideas by joining Project-Based Learning (PBL). Classes in our course are interactive so that student’s communication skills will be improved.

Robotics and Information Design Course

Year 1 and 2 at Omiya / Year 3 and 4 at Shibaura

Technicians to develop the products to aid society

Study an informational design, software design, and mechatronics design. Learn graphics, usability and other features of human-technology. Gain specialized knowledge and practical experience.

School of Architecture

Advanced Project Design Course

Year 1-4 at Toyosu

Learn a wide range of architectural subjects through lessons based in practice

Gain wide variety of knowledge in architecture such as interior decorating and urban development. Students apply the knowledge gained in lectures to exercises and deepen their understanding through designing and planning. Also, students visit construction sites to feel the real “space” and create construction materials.

Space and Architectural Design Course

Year 1-4 at Toyosu

Learn design that will improve quality of life

Students learn design for not only building but also urban space to increase the quality of residency. Skills to design buildings by considering design, history, technology, materials, environment and economy are gained through the course. Fieldwork in our course is opportunity to learn the latest technology and selecting buildings outside school is also designed for the course.

Urban and Architectural Design Course

Year 1-4 at Toyosu

Learn how to become the one who can contribute to the society by solving the method of problems through architecture. Students have a chance to gain conceptual ideas by joining Project-Based Learning (PBL). Classes in our course are interactive so that student’s communication skills will be improved.

Advanced Project Design Course

Year 1-4 at Toyosu

Learn a wide range of architectural subjects through lessons based in practice

Gain wide variety of knowledge in architecture such as interior decorating and urban development. Students apply the knowledge gained in lectures to exercises and deepen their understanding through designing and planning. Also, students visit construction sites to feel the real “space” and create construction materials.

Space and Architectural Design Course

Year 1-4 at Toyosu

Learn design that will improve quality of life

Students learn design for not only building but also urban space to increase the quality of residency. Skills to design buildings by considering design, history, technology, materials, environment and economy are gained through the course. Fieldwork in our course is opportunity to learn the latest technology and selecting buildings outside school is also designed for the course.
For short-term international students

Course List

Following is our Course Lists for Fall 2016 Undergraduate Sandwich Program

Department of Mechanical Engineering
- Advanced courses on Mechanical Engineering
 - Introduction to Energy and power source
 - Seminar on Mechanical Engineering 1
- The C Language for Mechanical Engineering

Department of Engineering Science and Mechanics
- Advanced Laboratory Exercises for Engineering Science 1
 - Advanced Laboratory Exercises for Engineering Science 2
- Fluid Mechanics
 - Mechanics of Materials Exercises
 - Robotics
 - Seminar on Mechanical Engineering

Department of Materials Science and Engineering
- Introduction to Computational Material Science Materials Science 2
 - Nuclear Science Engineering
 - Reliability Engineering
 - Semiconductors Materials
 - Surface Treatment

Department of Applied Chemistry
- Analytical Chemistry 1
- Analytical Chemistry 2
- Interface Chemistry
 - Introduction to Chemical Biology
 - Laboratory Course of Physical Chemistry

Department of Electrical Engineering
- Applied Mathematics
 - Electric Measurements
 - Electrical Engineering Seminar
 - Electromagnetism 3
 - Engineering Practice 1
 - Engineering Practice 2
- Mechatronics
 - Power Electronics
 - Vision and lighting

Department of Communications Engineering
- Fabrication Practice 1
 - Fabrication Practice 2
- Introduction to Communication Engineering 1
 - Introduction to Communication Engineering 2
- Seminar on Communication Engineering
 - Software Programming 1

Department of Electronic Engineering
- Biosensor
 - Electronic materials
- Acoustic Systems
 - Experiments in Electronic Engineering Course 2
 - Optoelectronics
 - Semiconductors Devices

Department of Civil Engineering
- Geographic Information Systems
 - Hydro Engineering
 - Surveying Practice 1
 - Surveying Practice 2
 - Underground Facility Engineering
 - General Lectures of Civil Engineering

Department of Architecture
- Architectural Design Studio 1
 - Architectural Design Studio 2
 - Architectural Design Studio 3
 - Architectural Design Studio 4
 - Architectural Design Studio 5
 - Exercises in Urban Analysis

Department of Architecture and Building Engineering
- Architectural Design 1
 - Architectural Design 2
 - Architectural Design 3
 - Architectural Design 3-A
 - Design & Drawing 3-B

Department of Information Science and Engineering
- Advanced Exercise on Computer and Information Science 2B
 - Applied Mathematics
 - Fundamental Exercise on Computer and Information Engineering 1B
 - Human Computer Interaction 1
 - Operating Systems
 - Principles of Programming Languages

Department of Bioscience and Engineering
- Advanced Bioscience
 - Applied Bioscience
 - Assistive Technologies
 - Basic Biological experiments
 - Biological/Measurements
 - Practice on CAD/CGAM

Department of Electronic Information Systems
- Computer Simulation
 - Control Systems
 - Information Communication Technology
 - Introduction to Embedded Systems
 - Programming Language Processor
 - Recent Trends on Electronic Systems
 - Recent Trends on Information Systems

Department of Machinery and Control Systems
- Automotive Engineering
 - Control Engineering II
 - Exercises in Inertial and Creative Design
 - Inertial and Creative Design
 - Machinery System Seminar
 - Mechatronics 1
 - Physics II: Electricity and Magnetism

Department of Architecture and Environment Systems
- Basic Environmental Studies in English
 - Environmental Studies in English
 - Environmental Field Survey 1
 - Environmental Land Use Planning
 - Land Use Planning Studio
 - Environmentally Sustainable Engineering

Department of Mathematical Sciences
- Analysis 1
 - Analysis II
 - Differential Equations
 - Fundamental Analysis
 - Introduction to Numerical Analysis

Department of Engineering and Design
- Communication Design
 - Engineering Ethics
 - Practice on Computer Aided Engineering
 - Practice on Design Project 1 (Product Design)
 - Practice on Design Project 1 (Production Systems)
 - Practice on Design Project 2 (Architecture and Urban Design)
 - Software Design

Mathematics/Quantitative Reasoning
- Calculus 1
 - Calculus 2
 - Ordinary Differential Equations

Liberal Arts & Social Science
- Information Accessibility

Language
- Japanese Language I (Toyo)
 - Japanese Language I (Omiya)
- Japanese Language II (Toyo)
 - Japanese Language II (Omiya)
- Japanese Language III (Toyo)
 - Japanese Language III (Omiya)

Campus

With three campuses in Saitama and Tokyo Bay area, SIT students enjoy many facilities including spacious athletic grounds, good access to public transport and latest research equipments. The Global Dormitory, located next to Omiya campus, is home away from home to both domestic and international students.

Places of interest around the campuses

- Railway museum
 - This railway museum was established to mark the 20th anniversary of the establishment of JR East and is popular with both young and old. It is fondly known as the “Teppaku”.

- Omiya Park
 - This prefectural park has been chosen as one of the top 100 sites for cherry blossom viewing. It covers 61.8ha and can be enjoyed all year long with red pines over a century old and 1000 cherry trees.

- Tokyo Tower
 - This communications tower was erected in 1958. The observation deck at 150 m and the special observation deck at 250 m both provide excellent views across Tokyo.

- Urban Dock Lalaport Toyosu
 - This seaside mall has the latest fashions and household items along with cinemas and fitness gyms.
Roles of RA

Common room / Shared kitchen

Common room and shared kitchen are located in the central area of each floor with accommodation (2nd to 5th floors). The dormitory is designed to promote mutual understanding among students from different countries, nationalities, religions and customs.

Overview of the facilities

Building structure: Five story reinforced concrete building
Number of rooms: 120 (total of Japanese and overseas students, including 30 females)
Room (individual): 17 m²
Facilities: Bed, air conditioner, desk, chair, bathroom unit with toilet (heated bidet type), closet, LAN, etc.
Shared facilities, etc: Kitchen and common room on each floor, coin operated washers and dryers
Maximum Contract: 2 years
Rent: JPY 35,200/month(excluding meals and utilities)
* One-month’s rent is needed as a deposit upon entry to the dormitory

For long-term international students

Student accommodations

The Global Dormitory in the Omiya campus is a place where international students and Japanese students can live together and develop global perspectives.

There are one or two graduate students living on each floor of the Global Dormitory as RA and who are there to offer advice about daily life and study. For example, after the dormitory’s welcome ceremony in April, new students go to each floor with RA to deepen their understanding about dormitory rules and how to use the common facilities properly. In an environment where people of different backgrounds and religions share the same living space, RA plays an important role in providing overall support so that every student can live in the dormitory comfortably.

Sample: Dormitory room layout

Entrance
Bedroom
Balcony
Desk
Bathroom/toilet
Storage
Common area

For short-term international students

Shibaura Institute of Technology attracts students from all corners of the world. Here are some comments from international students about their lives at Shibaura Institute of Technology.

Priscila Ribeiro Zucato
(Brazil)
Sandwich Program
Department of Electrical Engineering
University of Sao Paulo

About your research subject and brief description
I am deeply interested in robotics, especially in social robots which can not just interact with humans but also contribute in our daily needs. So, for my research, I intend to point out how the existent “nurse robots” (robots which can help physically impaired patients to move around) can become more helpful and friendly to the patients, in a way that doesn’t affect the main objective of those helpful robots.

The reason why you chose SIT
By the time I was choosing a Japanese University to attend, my main concern was that I could face some difficulties while adapting to the different culture, language and lifestyle in Japan, so I wanted to choose a University which could better support me on this adaptation. SIT drew my attention because of its great variety of classes offered in English, including Japanese language classes; clubs which welcome international students; cross-cultural events; as well as a caring International Office. The opportunity to join one of the research laboratories at SIT was another factor for my decision, since it has many laboratories which develop relevant researches on areas of my interest.

About your growth at SIT
For the time I have spent at SIT, I had a chance to get to know not only the Japanese Lifestyle, but also a more global community as I had the opportunity to know and work with people from all around the world. These experiences has taught me how to respect and better understand people from different cultures and backgrounds. I also had the opportunity to know many different fields of engineering, like mechanical and environmental engineering, through classes I had attended. All these factors contributed to offering me new knowledges that I am sure will be useful on my professional career as an engineer.

About monthly living expenses
Currently, my monthly expenses are about JPY 50,000 for dormitory expenses, plus JPY 36,000 for food and an average of JPY 13,000 for transportation from my dormitory to the university.

Nader Mohammedadel Shahata
(Saudi Arabia)
Doctor’s Program, Functional Control Systems
Graduate School of Shibaura Institute of Technology

What are you studying/learning at SIT, and why?
At SIT, I am not only learning things that I am already familiar with; but also my supervisor encourages me to increase my knowledge, which ranges from learning new programming languages to being critical thinkers.

Why did you choose SIT?
“Patience is the key to success” is a wisdom that I always believed in. SIT is an excellent place for achieving my dream as it offers a lot of facilities that support and motivate me to achieve my goal. With SIT, you will always be hungry to learn.

What have you learned or achieved at SIT?
Developing my Master’s thesis at SIT, I have improved my knowledge/skills by learning new perspectives with the supervision from professors in my field of research, computer science. Among the valuable knowledge/skills I gained was in C language, network programming and domain name systems, which has enabled me to develop my thesis.

About your research subject and brief description
I am deeply interested in robotics, especially in social robots which can not just interact with humans but also contribute in our daily needs. So, for my research, I intend to point out how the existent “nurse robots” (robots which can help physically impaired patients to move around) can become more helpful and friendly to the patients, in a way that doesn’t affect the main objective of those helpful robots.

The reason why you chose SIT
By the time I was choosing a Japanese University to attend, my main concern was that I could face some difficulties while adapting to the different culture, language and lifestyle in Japan, so I wanted to choose a University which could better support me on this adaptation. SIT drew my attention because of its great variety of classes offered in English, including Japanese language classes; clubs which welcome international students; cross-cultural events; as well as a caring International Office. The opportunity to join one of the research laboratories at SIT was another factor for my decision, since it has many laboratories which develop relevant researches on areas of my interest.

About your growth at SIT
For the time I have spent at SIT, I had a chance to get to know not only the Japanese Lifestyle, but also a more global community as I had the opportunity to know and work with people from all around the world. These experiences has taught me how to respect and better understand people from different cultures and backgrounds. I also had the opportunity to know many different fields of engineering, like mechanical and environmental engineering, through classes I had attended. All these factors contributed to offering me new knowledges that I am sure will be useful on my professional career as an engineer.

About monthly living expenses
Currently, my monthly expenses are about JPY 50,000 for dormitory expenses, plus JPY 36,000 for food and an average of JPY 13,000 for transportation from my dormitory to the university.

What are you studying/learning at SIT, and why?
At SIT, I am not only learning things that I am already familiar with; but also my supervisor encourages me to increase my knowledge, which ranges from learning new programming languages to being critical thinkers.

Why did you choose SIT?
“Patience is the key to success” is a wisdom that I always believed in. SIT is an excellent place for achieving my dream as it offers a lot of facilities that support and motivate me to achieve my goal. With SIT, you will always be hungry to learn.

What have you learned or achieved at SIT?
Developing my Master’s thesis at SIT, I have improved my knowledge/skills by learning new perspectives with the supervision from professors in my field of research, computer science. Among the valuable knowledge/skills I gained was in C language, network programming and domain name systems, which has enabled me to develop my thesis.

About your research subject and brief description
I am deeply interested in robotics, especially in social robots which can not just interact with humans but also contribute in our daily needs. So, for my research, I intend to point out how the existent “nurse robots” (robots which can help physically impaired patients to move around) can become more helpful and friendly to the patients, in a way that doesn’t affect the main objective of those helpful robots.

The reason why you chose SIT
By the time I was choosing a Japanese University to attend, my main concern was that I could face some difficulties while adapting to the different culture, language and lifestyle in Japan, so I wanted to choose a University which could better support me on this adaptation. SIT drew my attention because of its great variety of classes offered in English, including Japanese language classes; clubs which welcome international students; cross-cultural events; as well as a caring International Office. The opportunity to join one of the research laboratories at SIT was another factor for my decision, since it has many laboratories which develop relevant researches on areas of my interest.

About your growth at SIT
For the time I have spent at SIT, I had a chance to get to know not only the Japanese Lifestyle, but also a more global community as I had the opportunity to know and work with people from all around the world. These experiences has taught me how to respect and better understand people from different cultures and backgrounds. I also had the opportunity to know many different fields of engineering, like mechanical and environmental engineering, through classes I had attended. All these factors contributed to offering me new knowledges that I am sure will be useful on my professional career as an engineer.

About monthly living expenses
Currently, my monthly expenses are about JPY 50,000 for dormitory expenses, plus JPY 36,000 for food and an average of JPY 13,000 for transportation from my dormitory to the university.

What are you studying/learning at SIT, and why?
At SIT, I am not only learning things that I am already familiar with; but also my supervisor encourages me to increase my knowledge, which ranges from learning new programming languages to being critical thinkers.

Why did you choose SIT?
“Patience is the key to success” is a wisdom that I always believed in. SIT is an excellent place for achieving my dream as it offers a lot of facilities that support and motivate me to achieve my goal. With SIT, you will always be hungry to learn.

What have you learned or achieved at SIT?
Developing my Master’s thesis at SIT, I have improved my knowledge/skills by learning new perspectives with the supervision from professors in my field of research, computer science. Among the valuable knowledge/skills I gained was in C language, network programming and domain name systems, which has enabled me to develop my thesis.

About your research subject and brief description
I am deeply interested in robotics, especially in social robots which can not just interact with humans but also contribute in our daily needs. So, for my research, I intend to point out how the existent “nurse robots” (robots which can help physically impaired patients to move around) can become more helpful and friendly to the patients, in a way that doesn’t affect the main objective of those helpful robots.

The reason why you chose SIT
By the time I was choosing a Japanese University to attend, my main concern was that I could face some difficulties while adapting to the different culture, language and lifestyle in Japan, so I wanted to choose a University which could better support me on this adaptation. SIT drew my attention because of its great variety of classes offered in English, including Japanese language classes; clubs which welcome international students; cross-cultural events; as well as a caring International Office. The opportunity to join one of the research laboratories at SIT was another factor for my decision, since it has many laboratories which develop relevant researches on areas of my interest.

About your growth at SIT
For the time I have spent at SIT, I had a chance to get to know not only the Japanese Lifestyle, but also a more global community as I had the opportunity to know and work with people from all around the world. These experiences has taught me how to respect and better understand people from different cultures and backgrounds. I also had the opportunity to know many different fields of engineering, like mechanical and environmental engineering, through classes I had attended. All these factors contributed to offering me new knowledges that I am sure will be useful on my professional career as an engineer.

About monthly living expenses
Currently, my monthly expenses are about JPY 50,000 for dormitory expenses, plus JPY 36,000 for food and an average of JPY 13,000 for transportation from my dormitory to the university.
Undergraduate Sandwich Program

Outline:
Sandwich Program is a credited academic program, where the student continues to be registered at their home university, while studying at Shibaura Institute of Technology for a period of time between six months to a year.

For example, the student may study at their home university for the first two years, study at the College of Engineering at Shibaura Institute of Technology for the third year, and then complete their final studies at their home university. Students have a wide range of study options, from 16 departments and 3 colleges and one school. Classes are taught in English, and Japanese language lessons are also available.

Example:

<table>
<thead>
<tr>
<th>Year 1 at Home Univ.</th>
<th>Year 2 at Shibaura Institute of Technology (SIT)</th>
<th>Year 3 at SIT</th>
<th>Year 4 at Home Univ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taking courses in English & Lab experience for 1 or 2 semesters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements:
The applicant must:
- be an undergraduate student
- have good English skills—preferably TOEFL iBT 80 or equivalent
- be physically and mentally healthy

Program duration:
1 or 2 semesters

Schedule:

<table>
<thead>
<tr>
<th>Program</th>
<th>Spring Semester</th>
<th>Fall Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOV Deadline</td>
<td></td>
<td>MAY Deadline</td>
</tr>
<tr>
<td>DEC Result</td>
<td></td>
<td>JUN Result</td>
</tr>
<tr>
<td>JAN Preparation</td>
<td></td>
<td>JUL Preparation</td>
</tr>
<tr>
<td>FEB Enroll at SIT</td>
<td></td>
<td>AUG Enroll at SIT</td>
</tr>
</tbody>
</table>

Contact: global-admission@ow.shibaura-it.ac.jp

Research Exchange / Laboratory Internship Program

Outline:
Research Exchange/Laboratory Internship Program gives the student a chance to experience another culture, do some research in a different academic/research environment, and to pursue their specific research topics by involving international cooperation and collaboration at SIT.

Requirements:
The applicant must:
- be an undergraduate or graduate student.
- have sufficient English or Japanese skills.
- be physically and mentally healthy.

Program duration:
A couple of weeks - 1 year

Application Procedure:
1. Consult with the counselor from the international office at your university
2. Download the application forms from the following link:
http://www.shibaura-it.ac.jp/en/prospective/study_abroad/research-exchange_lab-internship-program.html
3. Fill out all the necessary documents in English and submit them to SIT only through the international office counselor at your university by the deadline.
4. You will receive an email with a Letter of Acceptance from SIT through the international office counselor at your university.
5. Come to SIT.

Deadline:
Students can participate in this program at a preferable timing. SIT accepts your application 3 months prior to your arrival.

Scholarships
Shibaura Institute of Technology offers scholarships for students who wish to study under the following short term programs (Non-Degree Seeking). The scholarships should be applied prior to the arrival in Japan.

Cost of living in Japan
A major cost will be housing and utilities. Use your grants wisely. The next biggest share will be taken by food at 25%, adding up to 67%. Of the remaining 30% or so will be health and hygiene, recreation, and other daily expenses.

However, if you try to live in Tokyo, the cost will be higher than the average. It will be approximately JPY 115,000 or more.
For long-term international students

Degree Program

Students planning to go on to university

Entrance examination

<table>
<thead>
<tr>
<th>Exam subject</th>
<th>Interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualifications</td>
<td>Students with foreign nationality reaching the following minimum academic standards.</td>
</tr>
<tr>
<td></td>
<td>Those who do not have Japanese citizenship and who meet the following qualifications (1 and 2) are eligible to apply to the exam;</td>
</tr>
<tr>
<td></td>
<td>a. Students to satisfy one of the following requirements and be age eighteen (18) or older upon enrollment;</td>
</tr>
<tr>
<td></td>
<td>b. Meet the following requirements of one of the following qualifications; (2) years in total. (Whoever graduated from high school in Japan are not eligible for the exam.)</td>
</tr>
<tr>
<td></td>
<td>a. Twelve (12) years of non-Japanese education curriculum must be completed when admitted to a Japanese or international school in Japan.</td>
</tr>
<tr>
<td></td>
<td>b. Twelve (12) years of general education in a foreign country must be completed and University Preparatory Course designed by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT) must be completed or expected to be completed at the designated institution.</td>
</tr>
<tr>
<td></td>
<td>c. Official permission for enrollment as a university in the home country has been obtained.</td>
</tr>
</tbody>
</table>

Tuition and fees

<table>
<thead>
<tr>
<th>Faculty Department</th>
<th>Number of successful candidates</th>
<th>Application term submission</th>
<th>Exam date</th>
<th>Results announcement</th>
<th>Due Date of Admission Documents submission</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Engineering</td>
<td>All Departments</td>
<td>A few</td>
<td>Monday, November 2006</td>
<td>Monday, January 30, 2007</td>
<td>Friday, January 20, 2007</td>
<td>Toyoaka on Osaka campus</td>
</tr>
<tr>
<td>College of Systems Engineering and Science</td>
<td>College of Engineering and Design School of Architecture</td>
<td>A few</td>
<td>Monday, December 2006</td>
<td>Monday, January 30, 2007</td>
<td>Friday, January 20, 2007</td>
<td>Toyoaka on Osaka campus</td>
</tr>
</tbody>
</table>

Tuition support

International students who do not receive any support from their country are eligible for tuition deduction. To be qualified, students must meet the requirement(s).

The amount of deduction is determined based on the level of achievement in the last semester, with the range from JPY 270,000 to JPY 350,000 per semester so the actual deduction starts the following semester. (e.g. The tuition deduction starts in Fall semester if the achievement in Spring semester satisfies the requirement.)

Graduate Program (Master’s/Doctor’s)

SIT offers two programs in Graduate school; Graduate School of Engineering and Science and Graduate School of Engineering Management (MOT). At Graduate School of Engineering and Science, students will deepen their skills and knowledge that they have gained in their undergraduate education, act and think proactively, and prepare for being an expert in the field they pursue. Meanwhile, students at Graduate School of Engineering Management (MOT) will learn how to combine the knowledge of engineering with management skills to develop strategies and envision the technological needs and solutions in business.

Research Student Program

This is for students who wish to study at SIT as a research student to do their research activity under the designated supervisor in order to prepare to enroll Master’s or Doctor’s program.

Requirements for Graduate and Research Student Program

Participants:
- must be fluent in English or Japanese and physically and mentally healthy.
- must complete or will finish 10 years of school education or equivalent.

Contact:
For Graduate Program: dainai-jimu@ow.shibaura-it.ac.jp
For Research Student Program: global-admission@ow.shibaura-it.ac.jp

Application documents:
1. CV
2. Abstract of Master’s thesis (if completed Master’s course)
3. Research Plan
4. Certificate of Graduation
5. Academic Records, if any

Application Schedule

<table>
<thead>
<tr>
<th>Program</th>
<th>Entry</th>
<th>Preliminary Application</th>
<th>Application</th>
<th>Screening</th>
<th>Travel Preparation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Student</td>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Program</td>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor’s Program</td>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Table showing the schedule for each program]